
CIT433027 ADLR: Project Ideas

October 17, 2024

Here, you can find several ideas for projects we collected. Take this as
an inspiration for your project. Some ideas are rather ”big”, meaning they
could result in multiple projects. After registering your team (including a draft
proposal), you will discuss the extent of your final proposal with your assigned
tutor.

1 Closing the Sim-to-Real Loop: Adapting Simulation Randomiza-
tion with Real World Experience

In Chebotar et al. [1], an efficient method for solving the sim2real problem by
iteratively adapting the simulation parameters to the real system is proposed.

• Create an experimental sim2sim setup because no real robot is available
(i.e., try to adapt one simulation to a given one with unknown parameters).

• Re-implement their algorithm based on the relative entropy policy search
or using reinforcement learning algorithms.

• Investigate the convergence of estimated parameters.

• Investigate the influence of a broader starting distribution on the final
performance.

• Investigate how re-using learned policies from previous iterations for ini-
tialization of the new network shortens training time and restrains the
final performance.

2 Non-sequential Reinforcement Learning for Hard Exploration Prob-
lems

A way of overcoming the problems associated with sparse rewards in Reinforce-
ment Learning is to utilize “expert demonstrations” in promising regions of the
state space. Bauza et al. [2] use (suboptimal) expert demonstrations for pro-
viding a curriculum of interesting states to the agent during learning. In the
absence of human experts, Blau et al. [3] propose to first generate successful tra-
jectories by RRT-based planning algorithms and then initialize a policy using
that data.

Based on one of the above papers, you could e.g. study one of the following
problems (or come up with your own ideas):

• Implement different heuristics for choosing states to explore from. Can
you also find a metric to decide when to stop an episode early?

1



• Implement an entirely different planning algorithms for obtaining expert
demonstrations. Analyse the dependency between the quality of the demon-
strations and the final performance of the policy.

3 Tactile exploration of objects

For grasping an object with a robotic hand, often a full 3D model of the given
object is required. Using a (depth-)camera, one can infer the surface of the
visible part of the object. However, the surface of the occluded parts is also
usually needed, e.g., to robustly grasp the object. With tactile exploration (i.e.,
slowly moving the robotic hand until the fingers touch the object), it is possible
to observe even the occluded parts of the object. This tactile information is
usually very sparse. The idea is to use a learning-based approach to complete
the full shape from this sparse contact information.

• Start in 2D: Train a neural network to complete a 2D shape based on a
few given points similar to Watkins-Valls et al. [4] did in the more complex
3D case.

• Develop a strategy that determines the best way for the next tactile ex-
ploration based on previous points using reinforcement learning.

• Bring it into 3D: Complete 3D shapes in the same way as done for 2D

• Combine tactile and visual depth information to infer the object’s shape

4 Self-supervised learning for robot grasping

Although grasping training data can be generated in simulation, it is computa-
tionally expensive to find high-quality grasps. Therefore, the training process
should be as data-efficient as possible. In Deep Learning, self-supervised learn-
ing is one prominent way to reduce the required labeled data. This has been
shown to generate useful features across various modalities like images, audio,
and text. In this project, the goal is to apply self-supervised learning to 3D
objects and use the resulting features for grasping.

• Familiarize yourself with the data2vec framework [5]

• Reimplement data2vec for 3D objects using a CNN

• Evaluate the learned features in grasping as a downstream task (data will
be provided [6])

• Optional: Replace the CNN with a transformer

5 Grasping via online adaptation

One way to find grasps for a given object is to train a grasp success classifier and
use that as an objective function for an online grasp optimization. Specifically,
one differentiates through the grasp score prediction network to optimize the
grasp parameters (input to the network) such that the grasp score (output of
the network) gets maximized.

• A dataset of multi-finger grasps will be provided [6]

2



• Preprocess the data

• Train a grasp score prediction network [7]

• Implement an optimization procedure to perform grasping inference

• Optional: Train a small generative grasping network to provide better
starting points for the optimization

6 Generative networks for robot grasping

Generative neural networks can be used to directly generate stable grasps for a
given unknown object. For a parallel jaw gripper, the network learns a distri-
bution over 6D end effector poses conditioned on the observed object. For this
application, different architectures are possible: Variational Autoencoder, Gen-
erative Adversarial Networks, diffusion-based architectures [8] and autoregres-
sive architectures [6]. The goal of this project is to apply one of the generative
architectures to the problem of grasp generation.

• For training, we make use of the existing public training dataset Acronym [9]

• Preprocess the data

• Adapt the generative architecture for robotic grasping

• Optional: Extend the approach to generating grasps constraint to lie on
a specified part of the object [10]

7 Tactile Material Classification

Tulbure and Bäuml [11] (as mentioned in the lecture) proved that one can
classify a vast number of materials robustly (≈ 95%) using only the spatio-
temporal signal of a tactile skin. For this project you can use the data of Tulbure
and Bäuml [11] from https://dlr-alr.github.io/dlr-tactmat/ and choose
one of the following two options:

Option 1 - Self-Supervised Learning

• It is way easier to collect unlabeled samples than labeled. Can we learn a
representation without the labels? Recent work in this direction is, e.g.,
a Joint Embedded Predictive Architecture (Assran et al. [12]).

• Instead of a Transformer model, you should start with the TacNet (CNN)
architecture of Tulbure and Bäuml [11] and check if you can validate the
claims of Assran et al. [12] for the spatio-temporal tactile signals.

Option 2 - Normalizing Flows & Invertible Neuronal Networks

• Regular classification with a CNN sometimes provides very misleading
predictions if the model is presented with data that is out of the training
distribution (OoD). To increase the robustness and to get further insight
of misclassification it is important to go beyond SotA deep learning CNN
classifiers.

3

https://dlr-alr.github.io/dlr-tactmat/


• The authors of the work of Mackowiak et al. provide a promising method
to train a Normalizing Flow that is cable of detecting if a data sample is
OoD.

• Use the method presented in work of Mackowiak et al. to train a generative
classifier with information bootle neck for tactile material classification.

• We will provide you with OoD data so you can validate the models capa-
bilities.

8 Active Learning for Physical Models

In Lectures 4 and 5, you will learn more about “All models are wrong, but
models that know when they are wrong are useful.” (inspired by George E. P.
Box). In this project, we explore how physical models can be approximated by
machine learning and how incorrect behavior can be prevented.

1. Simulate a Physical Model: Create a time-invariant nonlinear system with
Gaussian noise.

2. Baseline Model: Generate data and fit a neural network using supervised
learning to reproduce the behavior of the Physical Model.

3. Active Learning: Implement a probabilistic model (e.g., Bayesian Neural
Network) and an acquisition function to iteratively query new data points
from the Physical Model. Try to minimize the necessary data points while
matching the baseline accuracy.

4. Visualization: Show how the active learning approach reproduces the
Physical model with fewer data points than the Baseline Model.

5. Scaling Complexity: Increase the model’s complexity and demonstrate the
benefits of active learning compared to the baseline. It’s up to you how
pioneering you want to be.

Paper to start with: Tang et al. [14]

9 Distance Aware - Input Filtering

When encountering something for the first time, we approach it with uncer-
tainty, trying to determine if it works as expected. In Lecture 5, you will learn
how robots struggle with anomalies, including an example where a human fa-
tality occurred due to such issues.

1. Define, generate, or select a dataset (e.g., acceleration sensor data) con-
taining both in-distribution and out-of-distribution (OOD) data. OOD
data could be introduced by abnormal or unexpected sensor readings (e.g.,
spikes, random noise, or values outside the normal operating range).

2. Train a deep neural network (DNN) to learn the patterns in your dataset.
Apply spectral normalization to the model weights to ensure the hidden
layers preserve the distance between in-distribution and OOD data.

3. Replace the final layer with a Gaussian Process (GP) layer, allowing the
model to quantify uncertainty and detect OOD data (anomalies or noise).

4



4. Use the uncertainty estimates from the GP layer to design your filter.

5. Validate the performance of your filter using ground truth data, and com-
pare it to a traditional filter design (e.g., Low-Pass filter).

Paper to start with: Liu et al. [15]

10 Unsupervised Skill Discovery / Curiosity

Pretraining neural networks in an unsupervised setting is extremely effective for
language models. Models such as GPT or Bert can be fine-tuned or used directly
on downstream tasks. Similarly, RL agents can be pretrained in an environment
without an extrinsic reward signal and later be adapted to specific tasks. Laskin
et al. [16] compare many different approaches on a unified benchmark (URLB).

• Skim recent literature on unsupervised RL (e.g. [17, 18, 19])

• Choose one/come up with your own ideas or modifications.

• Implement and compare them with the results reported by URLB.

11 Learning the Inverse Kinematics

Look at the possibilities for representing inverse problems with neural networks.
Ardizzone et al. [20] compare different flavors of GANs, VAEs and INN(theirs)
for inverse problems in general. Extend their simple robotic example of a planner
arm to 3D, more DoFs, or multiple TCPs. Unlike in computer vision, for the
robot kinematic we have solid metrics to describe how well the generation task
was performed. How can we use this knowledge to our advantage?

• What is the best approach to represent the high dimensional nullspaces
for complex robot geometries?

• Lembono et al. [21] use an ensemble of GANs to reduce the mode collapse.
What other options do we have to improve the generative model?

• How to measure the performance if the real nullspace is not known?

• Predict not only the position of the TCP but also its rotation. How can
one best represent the SO(3)?

12 Motion Planning with Diffusion

Look into generative models for robotic motion planning based on the work by
Janner et al. [22]. The core of their approach lies in a diffusion probabilistic
model that plans by iteratively denoising trajectories.

• Use a simple 2D robot to get familiar with the diffusion approach in the
robotic context.

• Include the changing environment as a central part of the planning.

• Extend the framework to more complex robots.

• Alternatively, the Inverse Kinematics, with its inherent ambiguity, is a
second promising testbed for the diffusion models.

5

https://github.com/rll-research/url_benchmark


13 Coverage Path Planning

For search and rescue missions (or vacuum cleaners), exploring the environment
quickly and efficiently is vital. The goal of coverage path planning [23] is to
navigate collision-free in a (possibly unknown) map and visit all unseen regions.

• Build a simple test environment; focus on simple point robots in 2D/ 3D,
no additional complexity through kinematics.

• Formulate the objective: how do we measure and represent good coverage?

• Add more realism by incorporating a sensor model (e.g., avalanche bea-
con).

14 Learning Robot and Environment Representations

A crucial aspect when using learning-based techniques in robotics is the repre-
sentation and encoding of the relevant aspects of the problem. In the context
of collision avoidance, the robot itself and the environment with different ob-
stacles need to be modeled. The latter is especially relevant when considering
dynamic settings with rapid changes. The goal is to explore ONE promising
representation and analyze its potential for robot motion planning.

• Learn convex decomposition of arbitrary maps [24].

• Predict the Swept Volume of robot motions [25].

• Build a robot-centered signed distance field [26].

15 Trajectory Planning with Moving Obstacles

Drones not only have to plan flight paths through static environments, but also
avoid collisions with dynamic objects. To learn such trajectories, a suitable
encoding of the changing environment is crucial. Start with the Basis Points
Set Prokudin et al. [27] and extend it to dynamic environments. Use this
representation for neural motion planning Qureshi et al. [28].

• Come up with a state representation for dynamic environments.

• Set up a simple 2D (and later 3D) environment in which an agent can
navigate through moving obstacles.

• Use RL to plan optimal trajectories in this environment.

• Optional: Extend the method to work with uncertainties in the motion
prediction of the collision objects.

16 Recurrent Off-Policy Reinforcement Learning in POMDPs

In partially observable Markov decision processes (POMDPs), an RL agent has
to be equipped with some sort of memory in order to be able to act optimally. A
well-known method addressing this issue is to encode the history of observations
by recurrent neural networks (RNNs). For example, for the class of off-policy
methods, Heess et al. [29] combine RNNs with the DDPG algorithm, and Kap-
turowski et al. [30] study the interplay of DQN-based algorithms with recurrent
experience replay. Based on this work:

6



• Your tutor will provide you with an environment that requires the use of
memory to be solved optimally.

• Implement a recurrent version of the SAC algorithm by Haarnoja et al.
[31].

• Assess the effect of different design choices and hyperparameters (e.g. hid-
den state initialization strategy in the experience replay buffer, truncated
BPTT, ...)

17 Differentiable Bayesian Filters

*Prior knowledge of Bayesian filters highly recommended*
Differentiable filters are a promising approach for combining the algorithmic
structure of Bayesian filter techniques with the power of learning-based methods
(for an overview of existing methods, see, e.g., Kloss et al. [32]). Importantly,
differentiable filters offer a systematic way of dealing with aleatoric uncertainty
in state estimation problems. In this project you will:

• Implement a differentiable filter of your choice, for example, EKF, UKF,
or Particle Filter.

• Your tutor will provide you with a dataset of a pose estimation problem
for supervised learning and the code to modify the data generation.

• Train the filter on the dataset and conduct one or more of the follwing
experiments:

– Compare the performance of your differentiable filter with standard
filter variants (where available) on the dataset.

– Extend the filtering problem to estimation of physical parameters of
a system, like mass or friction coefficients.

– Compare the bayesian filter to baselines using Recurrent Neural Net-
works or Transformers. How do they compare in the low-data and
high-data regimes?

18 Diffusion Policies

Diffusion-based architectures have shown exciting results in image generation.
Recently, researchers started to apply them to policy learning. Chi et al. [33]
show promising imitation learning results with both vision- and state-based
policies.

• Apply the diffusion policy [33] to simple benchmark environments with
expert offline data (link).

• Analyze if the approach is better suited for specific types of environments
(e.g., planning vs. control).

• Adapt the diffusion architecture for other types of environments.

• Optional: Develop and implement ideas on how the architecture can be
used in a reinforcement learning setting.

7

https://github.com/Farama-Foundation/d4rl/wiki/Tasks


19 Casting Sim2Real as Meta-Reinforcement Learning

The RL2 algorithm evaluated by Yu et al. [34] promise sample-efficient meta-
reinforcement learning, meaning that the algorithm can quickly adapt to new
unseen tasks. We would like use the capabilities to handle heavily randomized
environments occurring in simulations that are designed to allow a real-world
transfer of the policy.

• Find a suitable benchmark environment.

• Implement the algorithm on top of an existing basic RL algorithm and
compare the performance.

• Examine the reward for constant as well as dynamically changing envi-
ronments.

• Analyze different loss terms and evaluate the performance.

• Extend the algorithm to deal with problems occurring in Sim2Sim settings
with unknown disturbances.

20 Information Bottleneck / Ignoring Noise

The reinforcement learning framework allows us to specify arbitrary observation
spaces. For robotic tasks, in particular, we often intuitively understand what
observations might be necessary to solve a given task. However, it is usually
unclear what additional (readily available) information benefits training times
and real-world performance. For practical purposes, it would be convenient to
pass all the available information to the agent. That raises several questions:

• Can we pass too much information?

• Is redundant information harmful or maybe beneficial (similar to over-
parameterization)?

• Can the agent learn to ignore noise inputs?

Explore those questions on simple environments (link) and come up with net-
work architectures, such as self-attention (cf. Tang et al. [35]) or simple world
models (encoder/decoder nets), to fix arising problems.

21 Model Predictive Control for Robotic Manipulation

Model predictive control (MPC) is a popular control strategy in robotics. Prior
implementations in simulation [36] often assume that the underlying physical
model is precisely known, which is, however, rarely the case in practice. Instead,
Domain Randomization (DR) should be applied to cover the range of possible
physical behaviors encountered in the real world. This project aims to investi-
gate the limitations of simple MPC-based approaches in the presence of model
uncertainty.

• If you feel comfortable coding in C++, extend the implementation pro-
vided in [36] to include randomization of different physical parameters
(friction, masses, contact behavior ...).

8

https://gymnasium.farama.org/environments/mujoco/


• If not, implement a simple stochastic MPC [37] in Python and a simple
test environment that allows for randomization of physical parameters
(with the help of your tutor).

• Analyze the sensitivity of the MPC controller to the randomization of
different types of physical parameters.

22 Investigating Rapid Motor Adaption

Qi et al. [38] use Rapid Motor Adaption to train a robust in-hand manipulation
policy in simulation, which can be deployed on the actual system without any
further adaptation. This is facilitated by a dedicated part of the neural network
predicting the current world in an end-to-end learned latent space to make the
policy more robust - first conditioned on a set of available states in simulation,
later on only those measurable when deployed on the real system. We want to
find the possible performance improvements and the limits of this approach in
a simulation-only setting.

• Define and set up a training environment with your tutor. For example, we
are interested in generating a robust in-hand manipulation policy. Also,
we will decide whether you want to use an existing RL framework or
implement the algorithm from scratch, depending on your focus.

• Analyze the performance gains as well as the limits of the Rapid Motor
Adapton algorithm.

• Expand the algorithm to tackle these identified problems, for example,
a different encoder architecture or changed loss functions, depending on
your identified problems and feedback from the tutor.

23 Residual Policies for Factory Manipulation

For this project, we will provide a MuJoCo environment with two robot arms and
a conveyor belt: https://youtu.be/IpwQPmgOLW0?si=mNzBQyJiv-8xCxzo/. The
task is to pick as many objects as possible from the conveyor belt and put them
into a basket. We also provide you with a baseline policy that solves the task
using classic methods from robotic control. Exploring the idea of Residual Pol-
icy Learning [39], your goal in this project is to improve upon the baseline by
learning a residual policy by RL.

24 Representing Shapes as Latent Codes

Efficient representations of 3D geometries are crucial for many robotic related
task. For example, in-hand manipulation or grasping can be conditioned on
the geometry of the object. Another task is tactile shape detection, where the
geometry of an unknown object should be determined. Park et al. [40] use a
”auto-decoder” structure to find a latent parametrization of 3D geometries.

• Generate a data set of 2D geometries by composing primitive shapes.

• Train a auto-decoder to find a latent space as in [40].

• Use the latent representation for tactile shape detection.

• Possibly expand to 3D.

9

https://youtu.be/IpwQPmgOLW0?si=mNzBQyJiv-8xCxzo/


25 Learning the Model of a Tactile Skin

Tactile sensing is crucial for fine manipulation with robotic hands. Modeling
a tactile skin sensor, however, requires soft contacts to capture the softness of
the fingers. This is computationally expensive and, hence, inefficient when used
together with reinforcement learning. Narang et al. [41] train a neural network
to map basic contact information such as the contact point and force to the
deformation and the sensor response.

• Familiarize yourself with our sensor model.

• Think of an efficient representation of the local geometry.

• Generate a data set and train the mapping.

References

[1] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan
Issac, Nathan D. Ratliff, and Dieter Fox. Closing the sim-to-real loop:
Adapting simulation randomization with real world experience. CoRR,
2018.

[2] Maria Bauza, Jose Enrique Chen, Valentin Dalibard, Nimrod Gileadi,
Roland Hafner, Murilo F Martins, Joss Moore, Rugile Pevceviciute, An-
toine Laurens, Dushyant Rao, et al. Demostart: Demonstration-led auto-
curriculum applied to sim-to-real with multi-fingered robots. arXiv preprint
arXiv:2409.06613, 2024.

[3] Tom Blau, Philippe Morere, and Gilad Francis. Learning from demon-
stration without demonstrations. In IEEE International Conference on
Robotics and Automation, 2021.

[4] David Watkins-Valls, Jacob Varley, and Peter Allen. Multi-modal geomet-
ric learning for grasping and manipulation. In IEEE International confer-
ence on robotics and automation, 2019.

[5] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and
Michael Auli. Data2vec: A general framework for self-supervised learning
in speech, vision and language. In International Conference on Machine
Learning, 2022.

[6] Dominik Winkelbauer, Berthold Bäuml, Matthias Humt, Nils Theurey,
and Rudolph Triebel. A two-stage learning architecture that generates
high-quality grasps for a multi-fingered hand. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2022.

[7] Mark Van der Merwe, Qingkai Lu, Balakumar Sundaralingam, Martin
Matak, and Tucker Hermans. Learning continuous 3d reconstructions for
geometrically aware grasping. In International Conference on Robotics and
Automation, 2020.

[8] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilis-
tic models. In Neural Information Processing Systems, 2020.

10



[9] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. Acronym: A large-
scale grasp dataset based on simulation. In IEEE International Conference
on Robotics and Automation, 2021.

[10] Jens Lundell, Francesco Verdoja, Tran Nguyen Le, Arsalan Mousavian,
Dieter Fox, and Ville Kyrki. Constrained generative sampling of 6-dof
grasps, 2023.

[11] Andreea Tulbure and Berthold Bäuml. Superhuman performance in tactile
material classification and differentiation with a flexible pressure-sensitive
skin. In Proc. IEEE/RAS International Conference on Humanoid Robots,
2018.

[12] M. Assran, Q. Duval, I. Misra, P. Bojanowski, P. Vincent, M. Rabbat,
Y. LeCun, and N. Ballas. Self-supervised learning from images with a
joint-embedding predictive architecture. In 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 15619–15629,
Los Alamitos, CA, USA, jun 2023. IEEE Computer Society. doi: 10.1109/
CVPR52729.2023.01499. URL https://doi.ieeecomputersociety.org/

10.1109/CVPR52729.2023.01499.

[13] R. Mackowiak, L. Ardizzone, U. Kothe, and C. Rother. Generative
Classifiers as a Basis for Trustworthy Image Classification. In 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2970–2980, Los Alamitos, CA, USA, June 2021. IEEE
Computer Society. doi: 10.1109/CVPR46437.2021.00299. URL https:

//doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00299.

[14] Shengbing Tang, Kenji Fujimoto, and Ichiro Maruta. Actively learning
dynamical systems using bayesian neural networks. Applied Intelligence, 53:
29338–29362, 2023. URL https://api.semanticscholar.org/CorpusID:

264563500.

[15] Jeremiah Zhe Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-
Weiss, and Balaji Lakshminarayanan. Simple and principled uncertainty
estimation with deterministic deep learning via distance awareness. 2020.

[16] Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu,
Catherine Cang, Lerrel Pinto, and Pieter Abbeel. URLB: unsupervised re-
inforcement learning benchmark. In Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks 1, 2021.

[17] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy P. Lillicrap.
Mastering diverse domains through world models. CoRR, abs/2301.04104,
2023.

[18] Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Ra-
jeswaran, and Pieter Abbeel. Unsupervised reinforcement learning with
contrastive intrinsic control. In S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh, editors, Advances in Neural Information Process-
ing Systems, volume 35, pages 34478–34491. Curran Associates, Inc., 2022.
URL https://proceedings.neurips.cc/paper_files/paper/2022/

file/debf482a7dbdc401f9052dbe15702837-Paper-Conference.pdf.

11

https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01499
https://doi.ieeecomputersociety.org/10.1109/CVPR52729.2023.01499
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00299
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00299
https://api.semanticscholar.org/CorpusID:264563500
https://api.semanticscholar.org/CorpusID:264563500
https://proceedings.neurips.cc/paper_files/paper/2022/file/debf482a7dbdc401f9052dbe15702837-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/debf482a7dbdc401f9052dbe15702837-Paper-Conference.pdf


[19] Mengdi Li, Xufeng Zhao, Jae Hee Lee, Cornelius Weber, and Stefan
Wermter. Internally rewarded reinforcement learning. In Proceedings of the
40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pages 20556–20574. PMLR, 2023.

[20] Lynton Ardizzone, Jakob Kruse, Carsten Rother, and Ullrich Köthe. An-
alyzing inverse problems with invertible neural networks. In International
Conference on Learning Representations, 2018.

[21] Teguh Santoso Lembono, Emmanuel Pignat, Julius Jankowski, and Sylvain
Calinon. Learning Constrained Distributions of Robot Configurations with
Generative Adversarial Network. IEEE Robotics and Automation Letters,
2021.

[22] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Plan-
ning with diffusion for flexible behavior synthesis. In International Confer-
ence on Machine Learning. PMLR, 2022.

[23] Arvi Jonnarth, Jie Zhao, and Michael Felsberg. Learning coverage paths
in unknown environments with reinforcement learning. In under review for
ICLR 2024, 2024.

[24] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey
Hinton, and Andrea Tagliasacchi. Cvxnet: Learnable convex decomposi-
tion. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 2020.

[25] John Baxter, Mohammad R. Yousefi, Satomi Sugaya, Marco Morales, and
Lydia Tapia. Deep prediction of swept volume geometries: Robots and
resolutions. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020.

[26] Baolin Liu, Gedong Jiang, Fei Zhao, and Xuesong Mei. Collision-free mo-
tion generation based on stochastic optimization and composite signed dis-
tance field networks of articulated robot. IEEE Robotics and Automation
Letters, 2023.

[27] Sergey Prokudin, Christoph Lassner, and Javier Romero. Efficient Learning
on Point Clouds with Basis Point Sets. In International Conference on
Computer Vision, 2019.

[28] Ahmed Hussain Qureshi, Yinglong Miao, Anthony Simeonov, and
Michael C. Yip. Motion planning networks: Bridging the gap between
learning-based and classical motion planners. IEEE Transactions on
Robotics (T-RO), 2021.

[29] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Sil-
ver. Memory-based control with recurrent neural networks. arXiv preprint
arXiv:1512.04455, 2015.

[30] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will
Dabney. Recurrent experience replay in distributed reinforcement learning.
In International Conference on Learning Representations, 2018.

12



[31] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic ac-
tor. In International Conference on Machine Learning, 2018.

[32] Alina Kloss, Georg Martius, and Jeannette Bohg. How to train your dif-
ferentiable filter. Autonomous Robots, pages 1–18, 2021.

[33] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin
Burchfiel, and Shuran Song. Diffusion policy: Visuomotor policy learning
via action diffusion. In Proceedings of Robotics: Science and Systems (RSS),
2023.

[34] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman,
Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning. CoRR, 2019.

[35] Yujin Tang, Duong Nguyen, and David Ha. Neuroevolution of self-
interpretable agents. In Carlos Artemio Coello Coello, editor, GECCO ’20:
Genetic and Evolutionary Computation Conference, Cancún Mexico, July
8-12, 2020, pages 414–424. ACM, 2020. doi: 10.1145/3377930.3389847.

[36] Deepmind. Mujocompc. https://github.com/google-deepmind/

mujoco_mpc, 2022.

[37] Taylor Howell, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom
Erez, and Yuval Tassa. Predictive sampling: Real-time behaviour synthesis
with MuJoCo. 2022.

[38] Haozhi Qi, Ashish Kumar, Roberto Calandra, Yi Ma, and Jitendra Malik.
In-hand object rotation via rapid motor adaptation. In 6th Annual Con-
ference on Robot Learning, 2022. URL https://openreview.net/forum?

id=Xux9gSS7WE0.

[39] Tom Silver, Kelsey Allen, Josh Tenenbaum, and Leslie Kaelbling. Residual
policy learning. arXiv [cs.RO], December 2018.

[40] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and
Steven Lovegrove. Deepsdf: Learning continuous signed distance functions
for shape representation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 165–174, 2019.

[41] Yashraj Narang, Balakumar Sundaralingam, Miles Macklin, Arsalan
Mousavian, and Dieter Fox. Sim-to-real for robotic tactile sensing via
physics-based simulation and learned latent projections. In 2021 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages 6444–
6451. IEEE, 2021.

13

https://github.com/google-deepmind/mujoco_mpc
https://github.com/google-deepmind/mujoco_mpc
https://openreview.net/forum?id=Xux9gSS7WE0
https://openreview.net/forum?id=Xux9gSS7WE0

	Closing the Sim-to-Real Loop: Adapting Simulation Randomization with Real World Experience
	Non-sequential Reinforcement Learning for Hard Exploration Problems
	Tactile exploration of objects
	Self-supervised learning for robot grasping
	Grasping via online adaptation
	Generative networks for robot grasping
	Tactile Material Classification
	Active Learning for Physical Models
	Distance Aware - Input Filtering
	Unsupervised Skill Discovery / Curiosity
	Learning the Inverse Kinematics
	Motion Planning with Diffusion
	Coverage Path Planning
	Learning Robot and Environment Representations
	Trajectory Planning with Moving Obstacles
	Recurrent Off-Policy Reinforcement Learning in POMDPs
	Differentiable Bayesian Filters
	Diffusion Policies
	Casting Sim2Real as Meta-Reinforcement Learning
	Information Bottleneck / Ignoring Noise
	Model Predictive Control for Robotic Manipulation
	Investigating Rapid Motor Adaption
	Residual Policies for Factory Manipulation
	Representing Shapes as Latent Codes
	Learning the Model of a Tactile Skin

